Enhanced Prediction of Student Dropouts Using Fuzzy Inference System and Logistic Regression

نویسندگان

  • A. Saranya
  • J. Rajeswari
چکیده

Predicting college and school dropouts is a major problem in educational system and has complicated challenge due to data imbalance and multi dimensionality, which can affect the low performance of students. In this paper, we have collected different database from various colleges, among these 500 best real attributes are identified in order to identify the factor that affecting dropout students using neural based classification algorithm and different mining technique are implemented for data processing. We also propose a Dropout Prediction Algorithm (DPA) using fuzzy logic and Logistic Regression based inference system because the weighted average will improve the performance of whole system. We are experimented our proposed work with all other classification systems and documented as the best outcomes. The aggregated data is given to the decision trees for better dropout prediction. The accuracy of overall system 98.6% it shows the proposed work depicts efficient prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods

Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...

متن کامل

Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system

Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...

متن کامل

Prediction of Fe-Co-Mn/MgO Catalytic Activity in Fischer-Tropsch Synthesis Using Nu-support Vector Regression

Support vector regression (SVR) is a learning method based on the support vector machine (SVM) that can be used for curve fitting and function estimation. In this paper, the ability of the nu-SVR to predict the catalytic activity of the Fischer-Tropsch (FT) reaction is evaluated and the result is compared with two other prediction techniques including: multilayer perceptron (MLP) and subtractiv...

متن کامل

Prediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models

Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016